852 research outputs found

    Stratospheric chemical and thermal response to long-term variability in solar UV irradiance

    Get PDF

    The effect of the solar rotational irradiance variation on the middle and upper atmosphere calculated by a three-dimensional chemistry-climate model

    Get PDF
    This paper analyzes the effects of the solar rotational (27-day) irradiance variations on the chemical composition and temperature of the stratosphere, mesosphere and lower thermosphere as simulated by the three-dimensional chemistry-climate model HAMMONIA. Different methods are used to analyze the model results, including high resolution spectral and cross-spectral techniques. To force the simulations, an idealized irradiance variation with a constant period of 27 days (apparent solar rotation period) and with constant amplitude is used. While the calculated thermal and chemical responses are very distinct and permanent in the upper atmosphere, the responses in the stratosphere and mesosphere vary considerably in time despite the constant forcing. The responses produced by the model exhibit a non-linear behavior: in general, the response sensitivities (not amplitudes) decrease with increasing amplitude of the forcing. In the extratropics the responses are, in general, seasonally dependent with frequently stronger sensitivities in winter than in summer. Amplitude and phase lag of the ozone response in the tropical stratosphere and lower mesosphere are in satisfactory agreement with available observations. The agreement between the calculated and observed temperature response is generally worse than in the case of ozone

    Simulations over South Asia using the Weather Research and Forecasting model with Chemistry (WRF-Chem): set-up and meteorological evaluation

    Get PDF
    The configuration and evaluation of the meteorology is presented for simulations over the South Asian region using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). Temperature, water vapor, dew point temperature, zonal and meridional wind components, precipitation and tropopause pressure are evaluated against radiosonde and satellite-borne (AIRS and TRMM) observations along with NCEP/NCAR reanalysis fields for the year 2008. Chemical fields, with focus on tropospheric ozone, are evaluated in a companion paper. The spatial and temporal variability in meteorological variables is well simulated by the model with temperature, dew point temperature and precipitation showing higher values during summer/monsoon and lower during winter. The index of agreement for all the parameters is estimated to be greater than 0.6 indicating that WRF-Chem is capable of simulating the variations around the observed mean. The mean bias (MB) and root mean square error (RMSE) in modeled temperature, water vapor and wind components show an increasing tendency with altitude. MB and RMSE values are within ±2 K and 1–4 K for temperature, 30% and 20–65% for water vapor and 1.6 m s<sup>−1</sup> and 5.1 m s<sup>−1</sup> for wind components. The spatio-temporal variability of precipitation is also reproduced reasonably well by the model but the model overestimates precipitation in summer and underestimates precipitation during other seasons. Such a behavior of modeled precipitation is in agreement with previous studies on South Asian monsoon. The comparison with radiosonde observations indicates a relatively better model performance for inland sites as compared to coastal and island sites. The MB and RMSE in tropopause pressure are estimated to be less than 25 hPa. Sensitivity simulations show that biases in meteorological simulations can introduce errors of ±(10–25%) in simulations of tropospheric ozone, CO and NO<sub>x</sub>. Nevertheless, a comparison of statistical metrics with benchmarks indicates that the model simulated meteorology is of sufficient quality for use in chemistry simulations

    Scale disparity and spectral transfer in anisotropic numerical turbulence

    Get PDF
    To study the effect of cancellations within long-range interactions on local isotropy at the small scales, we calculate explicitly the degree of cancellation in distant interactions in the simulations of Yeung & Brasseur and Yeung, Brasseur & Wang using the single scale disparity parameter 's' developed by Zhou. In the simulations, initially isotropic simulated turbulence was subjected to coherent anisotropic forcing at the large scales and the smallest scales were found to become anisotropic as a consequence of direct large-small scale couplings. We find that the marginally distant interactions in the simulation do not cancel out under summation and that the development of small-scale anisotropy is indeed a direct consequence of the distant triadic group, as argued by Yeung, et. al. A reduction of anisotropy at later times occurs as a result of the isotropizing influences of more local energy-cascading triadic interactions. Nevertheless, the local-to-nonlocal triadic group persists as an isotropizing influence at later times. We find that, whereas long-range interactions, in general, contribute little to net energy transfer into or out of a high wavenumber shell k, the anisotropic transfer of component energy within the shell increases with increasing scale separations. These results are consistent with results by Zhou, and Brasseur & Wei, and suggest that the anisotropizing influences of long range interactions should persist to higher Reynolds numbers. The residual effect of the forced distant group in this low-Reynolds number simulation is found to be forward cascading, on average

    Science directions in a post-COP21-world of transient climate change: enabling regional to local predictions in support of reliable climate information

    Get PDF
    During recent decades, through theoretical considerations and analyses of observations andmodel simulations, the scientific community has fundamentally advanced our understanding of thecoupled climate system, thereby establishing that humans affect the Earth’s climate. Resulting from thisremarkable accomplishment, the COP21 agreement marks a historic turning point for climate research bycalling for actionable regional climate change information on time scales from seasonal to centuries for thebenefit of humanity, as well as living and nonliving elements of the Earth environment. Out of the underlyingUnited National Framework Convention on climate Change process, improving seamless regional climateforecast capabilities emerges as a key challenge for the international research community. Addressing itrequires a multiscale approach to climate predictions. Here we offer a vision that emphasizes enhancedscientific understanding of regional to local climate processes as the foundation for progress. The scientificchallenge is extreme due to the rich complexity of interactions and feedbacks between regional andglobal processes, each of which affects the global climate trajectory. To gain the necessary scientific insightand to turn it into actionable climate information require technical development, international coordination,and a close interaction between the science and stakeholder communities

    ANALYSIS OF THE ETCHING MECHANISMS OF TUNGSTEN IN FLUORINE-CONTAINING PLASMAS

    Get PDF
    Tungsten and polysilicon layers were etched in three different types of etching equipment, in different etching modes. Etch rates and wall profiles were determined. Partially etched tungsten layers were analyzed through Auger spectroscopy. Combining all these results, it was possible to determine the etch rate limiting subprocesses for tungsten etching. For most process conditions, the arrival of atomic fluorine at the wafer surface is the etch rate limiting mechanism. For other processes, the removal of products with low volatility is the limiting mechanism.14261971197

    Coupled mesoscale–microscale modeling of air quality in a polluted city using WRF-LES-Chem

    Get PDF
    To perform realistic high-resolution air quality modeling in a polluted urban area, the Weather Research and Forecasting (WRF) model is used with an embedded large-eddy simulation (LES) module and online chemistry. As an illustration, a numerical experiment is conducted in the megacity of Hong Kong, which is characterized by multi-type inhomogeneous pollution sources and complex topography. The results from the multi-resolution simulations at mesoscale and LES scales are evaluated by comparing them with ozone sounding profiles and surface observations. The comparisons show that both mesoscale and LES simulations reproduce the mean concentrations of the chemical species and their diurnal variations at the background stations well. However, the mesoscale simulations largely underestimate the NOx concentrations and overestimate O3 at the roadside stations due to the coarse representation of the traffic emissions. The LES simulations improve the agreement with the measurements near the road traffic, and the LES with the highest spatial resolution (33.3 m) provides the best results. The large-eddy simulations show more detailed structures in the spatial distributions of chemical species than the mesoscale simulations, highlighting the capability of LES to resolve high-resolution photochemical transformations in urban areas. Compared to the mesoscale model results, the LES simulations show similar evolutions in the profiles of the chemical species as a function of the boundary layer development over a diurnal cycle.</p
    • …
    corecore